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SUMMARY

We present a new approach to deliver reliable approximations of the norm of the residuals resulting from
finite element solutions to the Stokes and Oseen equations. The method is based upon a global solve in
a bubble space using iterative techniques. This provides an alternative to the classical equilibrated
element residual methods for which it is necessary to construct proper boundary conditions for each local
problem. The method is first used to develop a global a posteriori error estimator. It is then applied in
a strategy to control the numerical error in specific outputs or quantities of interest which are functions
of the solutions to the Stokes and Oseen equations. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In recent years, the goal in a posteriori error estimation for computational processes has drifted
from evaluating the numerical error in the classical energy norm to estimating it in terms of
quantities of practical interest. Works in this field have been undertaken in [1–3] with the
objective to estimate and/or control the error by adapting the mesh parameters with respect to
these quantities. The methodology, developed in [4], is extended here to non-self-adjoint
problems, specifically the Oseen equations. It is based on the computation of functions which
relate the influence of the residuals, viewed as the sources of error in the finite element
approximations, onto the error quantity of interest. However, this technique relies on accurate
evaluation of the norm of the residuals and on global error estimators in the ‘energy’ norm.
We then propose a method which belongs to the family of Implicit Error Residual methods, for
which norms of the residuals Rh

m in the momentum equation and Rh
c in the continuity equation

are post-processed to provide meaningful error estimates. The computation of the norm of Rh
c

is shown to be exact and cheap. The calculation of the norm of Rh
m is however more

demanding. A new technique is developed which provides accurate approximations of Rh
m in

a space of bubble functions which is gradually enriched through a global but inexpensive
iterative process.
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2. PRELIMINARIES AND NOTATION

Let V denote an open bounded Lipschitz domain in Rd, d=2 or 3, with boundary (V. We
consider the Oseen equations with homogeneous boundary conditions:

−Du+ (a ·9)u+9p= f in V

9 ·u=0 in V (2.1)

u=0 on (V,

where u=u(x) and p=p(x) are the velocity and pressure defined at point x= (x1, x2, . . . , xn)
in V and a is a smooth divergence-free vector field on V (i.e. 9 ·a=0). The source term f= f(x)
is a prescribed body force. The Stokes equations are recovered from the Oseen equations by
setting a=0.

We begin by introducing the trial spaces of velocities V and pressures Q defined by:

V=H0
1(V)= (H0

1(V))d, Q=
!

q�L2(V):
&

V
q dx=0

"
,

with corresponding norms:

�7 �12=&
V

97 : 97 dx, q0
2=

&
V

q2 dx.

We also introduce the bilinear forms a, b and c :

a : H1(V)×H1(V)�R; a(u, 7)=
&

V
9u : 97 dx,

b : H1(V)×L2(V)�R; b(7, q)= −
&

V
q9 ·7 dx,

c : H1(V)×H1(V)�R; c(a ; u, 7)=
&

V
(a ·9)u ·7 dx

and consider the bilinear form ã

ã(u, 7)=a(u, 7)+c(a ; u, 7). (2.2)

Then, denoting V % the dual space of V, the variational formulation of the Oseen and Stokes
problems reads:

For f�V % given, find (u, p)�V×Q, s.t.
ã(u, 7)+b(7, p)=�f, 7�, Ö7�V
b(u, q)=0, Öq�Q

(2.3)

The bilinear forms ã and b are continuous with constants Mã and Mb respectively. The
constant Mã depends on the vector a, and in particular, is equal to 1 when a=0. The constant
Mb is equal to 
d when 7�H1(V) [4] and to 1 when 7�H0

1(V). Moreover, the form ã is
coercive, as for every 7�H1

0(V),

ã(7, 7)=a(7, 7)+c(a ; 7, 7)=a(7, 7)= �7 �12.
Moreover, it can be shown that b satisfies the standard LBB condition [5], in the sense that
there exists a constant b\0 such that:
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FE SOLUTIONS TO STOKES AND OSEEN EQUATIONS 5

sup
7�V¯{0}

�b(7, q)�
�7 �1

]bq0, Öq�Q. (2.4)

Then, it is well-known that problem (2.3) admits a unique solution (u, p) in V×Q (see for
example [5]).

Let Vh and Qh denote two conforming finite element subspaces, possibly h–p finite element
spaces [6], of V and Q in the sense that Vh¦V and Qh¦Q. Then, the finite element problem
provides approximate solutions (uh, ph)�Vh×Qh of (u, p):

For f�V % given, find (uh, ph)�Vh×Qh, s.t.
ã(uh, 7)+b(7, ph)=�f, 7�, Ö7�Vh

b(uh, q)=0, Öq�Qh

(2.5)

3. GLOBAL ERROR ESTIMATION

We recall that the goal in global error estimation is to obtain a global measure of the
numerical error over the whole domain V. Since a direct computation of the error is to be
avoided, due to the prohibitive cost, the choice of an appropriate measure is generally
suggested by the problem itself. Following is a brief review of the methodology for the Oseen
equations presented by Oden and Prudhomme [4] for the Stokes problem.

Let (e, E)= (u−uh, p−ph)�V×Q define the numerical error in the finite element solution
(uh, ph). Replacing u and p in (2.3) by (uh+e) and (ph+E), the error (e, E), due to the finite
element discretization, satisfies the system of equations:

ã(e, 7)+b(7, E)=Rh
m(7), Ö7�V

b(e, q)=Rh
c(q), Öq�Q

(3.6)

where the linear functionals Rh
m: V�R and Rh

c: Q�R,

Rh
m(7)=�Rh

m, 7��f, 7�− ã(uh, 7)−b(7, ph)
Rh

c(q)=�Rh
c, q�−b(uh, q)

are the residuals in the momentum equation and continuity equation, respectively. The residuals
Rh

m and Rh
c represent the source terms of the error. As such, we shall show that they deliver

equivalent measures of the error for appropriate choices of norms.
The norms of the residuals are defined as:

Rh
m�= sup

7�V¯{0}

Rh
m(7)
�7 �1

, Rh
c�= sup

q�Q¯{0}

Rh
c(q)

q0

. (3.7)

We can then prove the following theorem (see [4]):

Theorem 3.1
With above definitions

C1(�e �12+E0
2)5Rh

c�2 +Rh
m�25C2(�e �12+E0

2), (3.8)

where C1 and C2 are two positive constants depending, respectively, on Mã and b, and, on Mã

and Mb.
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The global quantity Rh
m�2 +Rh

c�2 gives a meaningful global estimate of the error as long
as the constants C1 and C2 remain close to one. For instance, in the case of the Stokes
problem, it can be shown that C1=min(1, b4) and C2=max(2+Mb

2, 2Mb
2). However, we

emphasize that such a result does not provide any reliable information about the local error in
general, as it is clear that the error may propagate far away from the sources Rh

m and Rh
c.

Nevertheless, elementwise contributions of Rh
m� and Rh

c� can be utilized to derive local
refinement indicators in order to reduce the global error in the numerical solution.

The evaluation of Rh
c� is straightforward and exact.

Lemma 3.1
Let uh�Vh be the discrete velocity of the Stokes or Oseen equations. Then:

Rh
c�=9 · uh0. (3.9)

On the other hand, only approximations of Rh
m� can be sought:

Theorem 3.2
Let V0 h, Vh¦V0 h¦V be a finite element space for which there exists s, 05sB1 such that
�8=8h �15s �8 �1, where 8 and 8h satisfy:

a(8, 7)=Rh
m(7), Ö7�V, (3.10)

a(8h, 7)=Rh
m(7), Ö7�V0 h. (3.11)

Let V0 h be decomposed as V0 h=Vh+Wh such that a strengthened Cauchy–Schwartz inequality
holds [7], i.e. there exists g, 05gB1, such that a(7h, wh)5g �7h �1�wh �1, for all 7h�Vh and
wh�Wh. Then


(1−s2)(1−g2)Rh
m�5 �ch �15Rh

m�, (3.12)

where ch�Wh is the solution of the finite system

a(ch, 7)=Rh
m(7), Ö7�Wh. (3.13)

For the proofs of this lemma and theorem, we refer to Oden and Prudhomme [4]. The
accuracy in �ch �1 of Rh

m� depends on s and g. In our h–p code used in the numerical
experiment to be discussed later, the basis functions are constructed via a family of hierarchic
shape functions based on the integrated Legendre polynomials (see [8]). Most of these shape
functions are orthogonal to each other with respect to the inner product a(·, ·) (see [9]), which
allows us to stipulate that the constant g should be close to 0.

On the other hand, the constant s depends on the richness of Wh. The space of perturba-
tions Wh is constructed from layers of basis functions of degree between p+1 and p+q, q]1,
where p is the maximal degree of the shape functions in Vh for each element. In h–p finite
element methods, these perturbations are viewed as bubble functions. In two-dimensional
problems, the functions are either interior bubbles whose support reduces to only one element
or edge bubbles whose support is shared by two contiguous elements. One expects the value of
s to tend to 0 as q increases.

Combining the result of Lemma 3.1 and of Theorems 3.1 and 3.2, one obtains the following
estimator hu :

hu
2= �ch �12+9 ·uh0

2. (3.14)

Then, from (3.8), (3.9) and (3.12),
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C1(1−s2)(1−g2)(�e �12+E0
2)5hu

25C2(�e �12+E0
2). (3.15)

The overall cost of this estimator scales down to the cost in solving the global problem
(3.13). We have proposed a coupled iterative procedure, in which the distribution of q is
adapted by enriching the space Wh with new bubble functions in those elements where the
elementwise contributions to �ch �1 are large, while solving (3.13) by an iterative Conjugate
Gradient method (CG) performing only a few iterations. Our approach is therefore different
from the equilibrated residual method of Ainsworth and Oden [10,11], for which the global
problem is decoupled into a collection of elementwise problems, and avoids the major
difficulty of prescribing proper (equilibrated) boundary conditions for each subproblem
[11,12], at comparable cost. See [4] for a study of the performance of this global error
estimator for the Stokes problem.

4. GOAL-ORIENTED ERROR ESTIMATION

A general objective in engineering applications and numerical simulations is to predict specific
quantities of interest in terms of the solution (u, p), such as pointwise quantities, drag and lift
coefficients, flow rates, etc. For instance, let us suppose we want to predict a quantity L(u, p),
where L represents a linear functional of (u, p). Then the computational process should be
designed in such a way that it controls the error quantity L(e, E)=L(u−uh, p−ph), rather
than the global error measure �e �12+E0

2.
The starting point of goal-oriented error estimation is as follows: since the residuals Rh

m and
Rh

c represent the sources of errors, we would like to find linear functionals vm and v c, if they
exist, such that:

L(e, E)=vm(Rh
m)+v c(Rh

c). (4.16)

These functions are named influence functions as they indicate the influence of the residuals on
the quantity L(e, E). They are defined on the bidual of V and Q, and since these spaces are
reflexive, the relation (4.16) becomes:

L(e, E)=Rh
m(vm)+Rh

c(v c). (4.17)

Substituting for the terms Rh
m(vm) and Rh

c(v c) in (4.17) using (3.6), one gets:

L(e, E)= ã(e, vm)+b(vm, E)+b(e, v c). (4.18)

It follows that the influence functions can be obtained as solutions of the global dual problem :

Find (vm, vc)�V×Q, such that
ã(7, vm)+b(7, v c)+b(vm, q)=L(7, q), Ö(7, q)�V×Q

(4.19)

which may be rewritten:

Find (vm, v c)�V×Q, such that
ã(7, vm)+b(7, v c)=L(7, 0), Ö7�V
b(vm, q)=L(0, q), Öq�Q

(4.20)
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It readily follows that the functions vm and v c do exist and are unique as L(7, 0)�V % and
L(0, q)�Q % (see [5]).

Obviously, problem (4.20) cannot be solved exactly for the functions vm and v c in the
general case. Instead, one computes finite element approximations vh

m and vh
c of vm and v c,

respectively, in the solution space Vh×Qh by the Galerkin method, that is:

Find (vm
h , vh

c)�Vh×Qh, such that

ã(7, vh
m)+b(7, vh

c)=L(7, 0), Ö7�Vh (4.21)

b(vh
m, q)=L(0, q), Öq�Qh

Observing from the definition of the residuals that

Rh
m(vh

m)=0, Rh
c(vh

c)=0, (4.22)

one gets from (4.17),

L(e, E)=Rh
m(vm)+Rh

c(v c)=Rh
m(vm−vh

m)+Rh
c(v c−vh

c). (4.23)

Denoting the numerical error (o, j)= (vm−vh
m, v c−vh

c) in the influence functions, which
naturally satisfies the system of equations:

ã(7, o)+b(7, j)=R( h
m(7), Ö7�V

b(o, q)=R( h
c(q), Öq�Q

(4.24)

where R( h
m(7)=L(7, 0)− ã(7, vh

m)−b(7, vh
c) and R( h

c(q)=L(0, q)−b(vh
m, q) are the residuals

associated with the influence functions, we then have after simplifications

�L(e, E)�= �Rh
m(o)+Rh

c(j)�= �a(8, o)−b(uh, j)�5%
K

�aK(8, o)�+ �bK(uh, j)�

5%
K

�8 �1,K �o �1,K+9 ·uh0,Kj0,K (4.25)

5%
K


�8 �1,K
2 +9 ·uh0,K

2 
�o �1,K
2 +j0,K

2 . (4.26)

We recall that 8 is the function in V satisfying (3.10). The symbol SK refers to the summation
over all elements K=1, . . . , Ne in the mesh, and the subscript K attached to the norms or the
bilinear forms a and b denote restrictions of the associated global quantity to an element K in
the mesh.

Again, the quantities on the right-hand side of inequality (4.26) cannot be determined
exactly. Therefore we resort to the techniques developed in the previous section to find reliable
approximations. For example, the function 8�V is approximated by ch�Wh, as shown in
Theorem 3.2. The quantity �o �1,K

2 +j0,K
2 is estimated using the global error estimator since the

error (o, j) in the influence functions satisfies a system of equations similar to the one for the
error (e, E) in the numerical solution (uh, ph). However, this estimator is in essence global and
not local, meaning that it provides a good estimate of the global error �o �12+j0

2, but not
necessarily a good estimate of the local quantity �o �1,K

2 +j0,K
2 , due to pollution or propaga-

tion errors. Nevertheless, the local estimates improve as the mesh is refined since the pollution
effects diminish accordingly.
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FE SOLUTIONS TO STOKES AND OSEEN EQUATIONS 9

Therefore, denoting hu,K
2 = �ch �0,K

2 +9 ·uh0,K
2 , and hv,K

2 the estimate for �o �1,K
2 +j0,K

2 , we
define the new estimate for L(e, E) as:

hL =%
K

hu,K hv,K. (4.27)

Rigorously, it cannot be shown that hL is greater than �L(e, E)�. However, in practice, and due
to the several inequalities introduced to obtain (4.26), it has been observed that:

�L(e, E)��hL. (4.28)

Therefore, the quantity hL does not necessarily deliver an accurate estimate of �L(e, E)� and for
this reason is called an error indicator with respect to the quantity of interest L. This indicator
still provides valuable information about the elementwise contributions to �L(e, E)� and as such
is used in a goal-oriented refinement strategy as described in the next section.

Becker and Rannacher in [2] developed a similar technique for the steady state Navier–
Stokes equations. However, in their approach, they use inequality (4.25) to provide element-
wise refinement indicators. Moreover, they estimate the residuals by local techniques and
resort to local interpolation properties to evaluate the error in the influence functions �o �1,K and
j0,K, introducing an interpolation constant they arbitrarily choose as 1. Another approach
has been proposed by Parashivoiu and Patera [13] in order to derive a lower and upper bound
to the error quantity L(e, E).

5. ADAPTATIVE STRATEGY TOWARDS ERROR CONTROL

In the previous sections, we presented two techniques to assess the accuracy of finite element
solutions of the Stokes and Oseen equations. The first estimates the error in the global norm
(�e �12+E0

2)1/2, which, from a physical point of view, indicates how the ‘energetic sources’ of
the error are distributed over the whole computational domain. The second technique is more
involved than the first, but provides an estimate of the error L(e, E) with respect to a specific
goal, expressed in terms of the linear functional L prescribed by the user.

In both cases, the strategy to control the error quantities (�e �12+E0
2)1/2 or L(e, E) consists

in two steps: (1) check that the relative error is smaller than a preset tolerance C tol; (2) if the
tolerance is not satisfied, adapt the finite element mesh in order to reduce the effects of the
sources of errors. Then, a new finite element solution is recomputed on the adapted mesh and
the new error estimated and controlled. This induces an iterative procedure which terminates
once the tolerance is reached.

In the case of the error quantity (�e �12+E0
2)1/2, one defines the relative error as:

erel=

�e �12+E0

2


�u �12+p0
2

. (5.29)

Clearly, neither the exact solution (u, p) nor the exact error (e, E) are known. Therefore one
checks instead that:

hu


�uh �12+ph0
2
5C tol, (5.30)

where hu is the error estimator defined in (3.14). Adaptation is performed by refining the
elements for which the contributions to hu are the largest. Decomposing the global quantity hu

into elementwise contributions hu,K as:

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 3–15 (1999)
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hu,K
2 = �ch �1,K

2 +9 ·uh0,K
2 , (5.31)

so that hu
2=�K hu,K

2 , the indicator for element refinement is given by:

hu,K
2

max
K

(hu,K
2 )
]Cadp, (5.32)

where Cadp is a number chosen between 0 and 1 depending on the problem (and also on the
user’s experience). In the numerical experiments presented in the next section, meshes are made
up of quadrilateral elements. The refinement procedure consists here in dividing an element
into four subquadrilaterals, allowing for ‘hanging nodes’, as shown in [6]. Alternatively, in the
p-version of the finite element method, meshes can be adapted by adding new shape functions
of higher degrees in elements verifying the criterion (5.32).

We follow the same strategy to perform the adaptative control of the error quantity L(e, E).
In particular we check that

hL

�L(uh, ph)�5C tol (5.33)

in order to decide if refinement is necessary. Here hL denotes the error indicator as in (4.27).
Then, the error L(e, E) can be controlled by refining all the elements for which

hu,K ·hv,K

max
K

(hu,K ·hv,K)
]Cadp, (5.34)

where hu,K and hv,K referred to as the elementwise contributions to the estimates of the global
quantities (�8 �12+9 ·uh0

2)1/2 and (�o �12+j0
2)1/2, respectively. By doing so, we refine all the

elements which contribute the most to the quantity L(e, E).
We conclude this section by a comment on the tolerance C tol, for which the choice (and

meaning) of a particular value is somehow ambiguous. On one hand, the relative error based
on the global norm (� · �12+ ·0

2)1/2 makes little sense, especially in fluid mechanics. Indeed, for
open flow problems, the size of the computational domain V is frequently chosen in an
arbitrary manner. Meanwhile, the errors may be very large in local regions of the flow, such
as corners. It results that the relative error, a fortiori the choice of the tolerance, is closely
correlated to the size of the domain. In problems of flow over an obstacle, for instance, the
relative error can be reduced simply by extending the domain at the inflow (or outflow),
though not improving the accuracy of the solution around the obstacle. On the other hand, the
relative error based on L has a straightforward meaning for the user as it is related to a specific
physical quantity of the solution. Nevertheless, we have pointed out that hL may overestimate
the error L(e, E) by a few orders of magnitude, which implies that the tolerance C tol in (5.33)
can not serve as an accurate upper bound of the associated relative error. In conclusion, the
adaptative control of the error is fully automatized by just specifying the two parameters C tol

and Cadp, but the choice of their values still requires proper judgement from the user.

6. NUMERICAL EXAMPLE

The objective of the following numerical experiment is to highlight the advantages of the
adaptative process based on quantities of interest L. This is demonstrated on the problem of
the channel flow over a surface-mounted obstacle. The computational domain, as well as the
initial mesh of 115 elements, are shown in Figure 1, where the obstacle is represented by the
unit square [5, 6]× [0, 1]. Along the lateral walls and obstacle, the velocity vector is set to zero.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 3–15 (1999)
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A Poiseuille-type velocity profile is prescribed at the inflow located on the left side of the
domain. At the outflow, we use the artificial boundary condition −pn+(u/(n=0 as in [14]
where n denotes the outward normal to the boundary. The velocity and pressure fields are
approximated by a piecewise biquadratic and bilinear polynomials respectively. Finally we set
a=0.

We suppose that the goal of the computations is directed towards the study of the
recirculation region upstream of the step. Visualization of the recirculation is generally
achieved by plotting the streamlines, which, in two-dimensional flows are the isolines of the
streamfunction C, satisfying u= −(C/(y, 6=(C/(x. The streamfunction is known to be
related to the vorticity z=z(u) by the relation

DC=z (6.35)

so that we choose the quantity of interest to be the circulation C that is, the line integral of the
velocity around the closed curve (VK which delimits the fixed subdomain VK as shown in
Figure 2. It follows that:

L(u, p)=C=
7
(VK

u ·ds=
&

VK

z(u) dx (6.36)

where ds refers to the differential vector along the path of integration (VK. For simplicity, the
subdomain VK is chosen to coincide with one element of the initial mesh (hence the subscript
K). When the mesh is refined, it may then be formed of several subelements. Finally, one
remarks that L is a linear functional of the velocity only.

We set up two series of experiments to compare the performance of the adaptation strategy
using one or the other error estimators. For the error estimator based on the global ‘energy’
norm, we set C tol=0.00025 and Cadp=0.5. We show in Figures 3 and 5 the adapted meshes
after 8 and 14 adaptation cycles. As expected, they exhibit highly refined regions around the
top corners of the obstacle due to the large errors produced by the singularity in the pressure.
We observe that few elements are refined during the first cycles so that the computations are
very cheap in comparison to those performed on the latest meshes. In Figures 4 and 6 we

Figure 1. Computational domain and initial mesh for the obstacle problem.

Figure 2. Close-up view of the obstacle and subdomain VK.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 3–15 (1999)
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Figure 3. Adapted mesh with 317 elements.

Figure 4. Vorticity contours and streamlines associated with the mesh of Figure 3.

Figure 5. Adapted mesh with 968 elements.

Figure 6. Vorticity contours and streamlines associated with the mesh of Figure 5.

display the vorticity contours and plot the streamlines (actually the pathlines since they are
identical for a steady flow), using a visualization package. One observes that these are poorly
resolved, even on the finest mesh formed of 968 elements.

In the second series, we adapt the mesh using the estimate based on the error quantity
L(e, E) and set C tol=0.1 and Cadp=0.5. We show in Figure 7 the final mesh obtained after
14 adaptation cycles. It is essentially refined in the subdomain VK, as expected, but also around
the upper corners of the obstacle. This shows how much remote sources of errors do influence
the recirculation upstream of the obstacle. Such phenomena are regarded as ‘pollution effects’
by Babus' ka and coworkers in [1]. We interpret those as the propagation of the error away
from the sources of errors Rh

m and Rh
c. In Figure 8, contour lines of the vorticity and

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 3–15 (1999)
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streamlines are displayed. They compare well qualitatively to the results obtained by Fragos et
al. [15] as far as the recirculation region upstream of the obstacle is concerned.

Figure 9 compares the behavior of the quantity L(e, E) and of the estimate hL versus the
number of degrees of freedom, as the mesh is refined. The exact error quantity L(e, E) is
actually unknown for the finite element solutions (uh, ph). Therefore, L(e, E) is approximated
by the numerical quantity L(ũ−uh, p̃−ph), where (ũ, p̃) is the solution obtained on a finely
refined mesh. This confirms that the estimate hL is smaller by several orders of magnitude than
the exact error quantity L(e, E). We can take advantage of the iterative adaptive procedure to
extract a better estimate of the error. Let uh

r defines a finite element solution after the r-th
refinement level, r=0 referring to the initial mesh. The error L(e, E) with respect to the
solution u r

h can then be approximated using the following quantity:

h̃L= �L(uh
r+1, ph

r+1)−L(uh
r, pr

h)�. (6.37)

The quantity h̃L is compared with L(e, E) in Figure 10.

Figure 7. Adapted mesh with 881 elements.

Figure 8. Vorticity contours and streamlines associated with the mesh of Figure 7.

Figure 9. Comparison of �L(e, E)� (1) and hL (2) versus the total number of degrees of freedom.
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Figure 10. Comparison of �L(e, E)� (1) and h̃L (2) versus the total number of degrees of freedom.

Figure 11. Evolution of the error �L(e, E)� as the mesh is adapted using either the estimate hL of L(e, E) (1) or the
estimate hu of (�e �12+E0

2)1/2 (2).

Figure 11 shows the evolution of the error L(e, E) with respect to the number of degrees of
freedom when the mesh is refined using the two adaptative strategies. It confirms that the
goal-oriented adaptive strategy accelerates the calculation of features of the solution to preset
levels of accuracy as compared with traditional adaptive schemes based on global estimates.

7. SUMMARY AND CONCLUSIONS

We have presented an adaptive strategy to control computational processes with respect to
linear functionals of the solution (u, p) of the Stokes and Oseen equations. The method
involves the approximation of influence functions which are shown to be solutions of the dual
problem and depends on obtaining reliable error estimators in the ‘energy’ norms for the
Stokes and Oseen equations. We note in conclusion that the methodology can be extended by
linearization to non-linear quantities of interest and to non-linear problems such as the steady
state Navier–Stokes equations.
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